Properties

Label 5733.1759
Modulus 57335733
Conductor 57335733
Order 4242
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(42))
 
M = H._module
 
chi = DirichletCharacter(H, M([14,8,7]))
 
pari: [g,chi] = znchar(Mod(1759,5733))
 

Basic properties

Modulus: 57335733
Conductor: 57335733
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 4242
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5733.if

χ5733(88,)\chi_{5733}(88,\cdot) χ5733(121,)\chi_{5733}(121,\cdot) χ5733(907,)\chi_{5733}(907,\cdot) χ5733(940,)\chi_{5733}(940,\cdot) χ5733(1726,)\chi_{5733}(1726,\cdot) χ5733(1759,)\chi_{5733}(1759,\cdot) χ5733(2545,)\chi_{5733}(2545,\cdot) χ5733(3364,)\chi_{5733}(3364,\cdot) χ5733(3397,)\chi_{5733}(3397,\cdot) χ5733(4216,)\chi_{5733}(4216,\cdot) χ5733(5002,)\chi_{5733}(5002,\cdot) χ5733(5035,)\chi_{5733}(5035,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ21)\Q(\zeta_{21})
Fixed field: Number field defined by a degree 42 polynomial

Values on generators

(2549,1522,5293)(2549,1522,5293)(e(13),e(421),e(16))(e\left(\frac{1}{3}\right),e\left(\frac{4}{21}\right),e\left(\frac{1}{6}\right))

First values

aa 1-11122445588101011111616171719192020
χ5733(1759,a) \chi_{ 5733 }(1759, a) 1111e(1942)e\left(\frac{19}{42}\right)e(1921)e\left(\frac{19}{21}\right)e(2942)e\left(\frac{29}{42}\right)e(514)e\left(\frac{5}{14}\right)e(17)e\left(\frac{1}{7}\right)e(542)e\left(\frac{5}{42}\right)e(1721)e\left(\frac{17}{21}\right)e(221)e\left(\frac{2}{21}\right)1-1e(2542)e\left(\frac{25}{42}\right)
sage: chi.jacobi_sum(n)
 
χ5733(1759,a)   \chi_{ 5733 }(1759,a) \; at   a=\;a = e.g. 2