from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5733, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([28,32,0]))
pari: [g,chi] = znchar(Mod(2536,5733))
Basic properties
Modulus: | \(5733\) | |
Conductor: | \(441\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(21\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{441}(331,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 5733.gy
\(\chi_{5733}(898,\cdot)\) \(\chi_{5733}(1327,\cdot)\) \(\chi_{5733}(1717,\cdot)\) \(\chi_{5733}(2146,\cdot)\) \(\chi_{5733}(2536,\cdot)\) \(\chi_{5733}(2965,\cdot)\) \(\chi_{5733}(3355,\cdot)\) \(\chi_{5733}(3784,\cdot)\) \(\chi_{5733}(4174,\cdot)\) \(\chi_{5733}(4603,\cdot)\) \(\chi_{5733}(4993,\cdot)\) \(\chi_{5733}(5422,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | Number field defined by a degree 21 polynomial |
Values on generators
\((2549,1522,5293)\) → \((e\left(\frac{2}{3}\right),e\left(\frac{16}{21}\right),1)\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(16\) | \(17\) | \(19\) | \(20\) |
\( \chi_{ 5733 }(2536, a) \) | \(1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{8}{21}\right)\) |
sage: chi.jacobi_sum(n)