Properties

Label 5733.2749
Modulus $5733$
Conductor $5733$
Order $84$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(84))
 
M = H._module
 
chi = DirichletCharacter(H, M([28,58,35]))
 
pari: [g,chi] = znchar(Mod(2749,5733))
 

Basic properties

Modulus: \(5733\)
Conductor: \(5733\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(84\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5733.lb

\(\chi_{5733}(115,\cdot)\) \(\chi_{5733}(292,\cdot)\) \(\chi_{5733}(670,\cdot)\) \(\chi_{5733}(808,\cdot)\) \(\chi_{5733}(934,\cdot)\) \(\chi_{5733}(1111,\cdot)\) \(\chi_{5733}(1627,\cdot)\) \(\chi_{5733}(1753,\cdot)\) \(\chi_{5733}(2308,\cdot)\) \(\chi_{5733}(2446,\cdot)\) \(\chi_{5733}(2572,\cdot)\) \(\chi_{5733}(2749,\cdot)\) \(\chi_{5733}(3127,\cdot)\) \(\chi_{5733}(3391,\cdot)\) \(\chi_{5733}(3568,\cdot)\) \(\chi_{5733}(3946,\cdot)\) \(\chi_{5733}(4084,\cdot)\) \(\chi_{5733}(4210,\cdot)\) \(\chi_{5733}(4387,\cdot)\) \(\chi_{5733}(4765,\cdot)\) \(\chi_{5733}(4903,\cdot)\) \(\chi_{5733}(5206,\cdot)\) \(\chi_{5733}(5584,\cdot)\) \(\chi_{5733}(5722,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{84})$
Fixed field: Number field defined by a degree 84 polynomial

Values on generators

\((2549,1522,5293)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{29}{42}\right),e\left(\frac{5}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 5733 }(2749, a) \) \(1\)\(1\)\(e\left(\frac{59}{84}\right)\)\(e\left(\frac{17}{42}\right)\)\(e\left(\frac{37}{84}\right)\)\(e\left(\frac{3}{28}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{73}{84}\right)\)\(e\left(\frac{17}{21}\right)\)\(e\left(\frac{2}{21}\right)\)\(i\)\(e\left(\frac{71}{84}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5733 }(2749,a) \;\) at \(\;a = \) e.g. 2