sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(5733, base_ring=CyclotomicField(42))
M = H._module
chi = DirichletCharacter(H, M([14,20,21]))
pari:[g,chi] = znchar(Mod(5602,5733))
Modulus: | 5733 | |
Conductor: | 5733 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 42 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ5733(25,⋅)
χ5733(688,⋅)
χ5733(844,⋅)
χ5733(1507,⋅)
χ5733(1663,⋅)
χ5733(2326,⋅)
χ5733(2482,⋅)
χ5733(3145,⋅)
χ5733(3964,⋅)
χ5733(4120,⋅)
χ5733(4939,⋅)
χ5733(5602,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(2549,1522,5293) → (e(31),e(2110),−1)
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 11 | 16 | 17 | 19 | 20 |
χ5733(5602,a) |
1 | 1 | e(143) | e(73) | e(4241) | e(149) | e(214) | e(4237) | e(76) | e(2119) | e(61) | e(4217) |
sage:chi.jacobi_sum(n)