Properties

Label 5733.gf
Modulus 57335733
Conductor 819819
Order 1212
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5733, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,4,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(275,5733))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 57335733
Conductor: 819819
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 819.ge
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.4002614648521196621698550493.3

Characters in Galois orbit

Character 1-1 11 22 44 55 88 1010 1111 1616 1717 1919 2020
χ5733(275,)\chi_{5733}(275,\cdot) 11 11 e(712)e\left(\frac{7}{12}\right) e(16)e\left(\frac{1}{6}\right) e(712)e\left(\frac{7}{12}\right) i-i e(16)e\left(\frac{1}{6}\right) i-i e(13)e\left(\frac{1}{3}\right) 11 e(112)e\left(\frac{1}{12}\right) i-i
χ5733(2039,)\chi_{5733}(2039,\cdot) 11 11 e(112)e\left(\frac{1}{12}\right) e(16)e\left(\frac{1}{6}\right) e(112)e\left(\frac{1}{12}\right) ii e(16)e\left(\frac{1}{6}\right) ii e(13)e\left(\frac{1}{3}\right) 11 e(712)e\left(\frac{7}{12}\right) ii
χ5733(4232,)\chi_{5733}(4232,\cdot) 11 11 e(512)e\left(\frac{5}{12}\right) e(56)e\left(\frac{5}{6}\right) e(512)e\left(\frac{5}{12}\right) ii e(56)e\left(\frac{5}{6}\right) ii e(23)e\left(\frac{2}{3}\right) 11 e(1112)e\left(\frac{11}{12}\right) ii
χ5733(4673,)\chi_{5733}(4673,\cdot) 11 11 e(1112)e\left(\frac{11}{12}\right) e(56)e\left(\frac{5}{6}\right) e(1112)e\left(\frac{11}{12}\right) i-i e(56)e\left(\frac{5}{6}\right) i-i e(23)e\left(\frac{2}{3}\right) 11 e(512)e\left(\frac{5}{12}\right) i-i