Properties

Label 5760.2879
Modulus 57605760
Conductor 120120
Order 22
Real yes
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(2))
 
M = H._module
 
chi = DirichletCharacter(H, M([1,1,1,1]))
 
pari: [g,chi] = znchar(Mod(2879,5760))
 

Basic properties

Modulus: 57605760
Conductor: 120120
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 22
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from χ120(59,)\chi_{120}(59,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5760.m

χ5760(2879,)\chi_{5760}(2879,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q\Q
Fixed field: Q(30)\Q(\sqrt{30})

Values on generators

(2431,901,641,3457)(2431,901,641,3457)(1,1,1,1)(-1,-1,-1,-1)

First values

aa 1-11177111113131717191923232929313137374141
χ5760(2879,a) \chi_{ 5760 }(2879, a) 1111111-11111111-1111-1111-1
sage: chi.jacobi_sum(n)
 
χ5760(2879,a)   \chi_{ 5760 }(2879,a) \; at   a=\;a = e.g. 2