Properties

Label 5760.3791
Modulus $5760$
Conductor $288$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5760, base_ring=CyclotomicField(24))
 
M = H._module
 
chi = DirichletCharacter(H, M([12,15,4,0]))
 
pari: [g,chi] = znchar(Mod(3791,5760))
 

Basic properties

Modulus: \(5760\)
Conductor: \(288\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(24\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{288}(11,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5760.es

\(\chi_{5760}(911,\cdot)\) \(\chi_{5760}(1391,\cdot)\) \(\chi_{5760}(2351,\cdot)\) \(\chi_{5760}(2831,\cdot)\) \(\chi_{5760}(3791,\cdot)\) \(\chi_{5760}(4271,\cdot)\) \(\chi_{5760}(5231,\cdot)\) \(\chi_{5760}(5711,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.1486465269728735333725176976133731985582456832.1

Values on generators

\((2431,901,641,3457)\) → \((-1,e\left(\frac{5}{8}\right),e\left(\frac{1}{6}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 5760 }(3791, a) \) \(1\)\(1\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{17}{24}\right)\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{7}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5760 }(3791,a) \;\) at \(\;a = \) e.g. 2