Properties

Label 58.11
Modulus 5858
Conductor 2929
Order 2828
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(58, base_ring=CyclotomicField(28))
 
M = H._module
 
chi = DirichletCharacter(H, M([25]))
 
pari: [g,chi] = znchar(Mod(11,58))
 

Basic properties

Modulus: 5858
Conductor: 2929
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 2828
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ29(11,)\chi_{29}(11,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 58.f

χ58(3,)\chi_{58}(3,\cdot) χ58(11,)\chi_{58}(11,\cdot) χ58(15,)\chi_{58}(15,\cdot) χ58(19,)\chi_{58}(19,\cdot) χ58(21,)\chi_{58}(21,\cdot) χ58(27,)\chi_{58}(27,\cdot) χ58(31,)\chi_{58}(31,\cdot) χ58(37,)\chi_{58}(37,\cdot) χ58(39,)\chi_{58}(39,\cdot) χ58(43,)\chi_{58}(43,\cdot) χ58(47,)\chi_{58}(47,\cdot) χ58(55,)\chi_{58}(55,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ28)\Q(\zeta_{28})
Fixed field: Number field defined by a degree 28 polynomial

Values on generators

3131e(2528)e\left(\frac{25}{28}\right)

Values

aa 1-11133557799111113131515171719192121
χ58(11,a) \chi_{ 58 }(11, a) 1-111e(1328)e\left(\frac{13}{28}\right)e(914)e\left(\frac{9}{14}\right)e(57)e\left(\frac{5}{7}\right)e(1314)e\left(\frac{13}{14}\right)e(928)e\left(\frac{9}{28}\right)e(114)e\left(\frac{1}{14}\right)e(328)e\left(\frac{3}{28}\right)i-ie(128)e\left(\frac{1}{28}\right)e(528)e\left(\frac{5}{28}\right)
sage: chi.jacobi_sum(n)
 
χ58(11,a)   \chi_{ 58 }(11,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ58(11,))   \tau_{ a }( \chi_{ 58 }(11,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ58(11,),χ58(n,))   J(\chi_{ 58 }(11,·),\chi_{ 58 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ58(11,))  K(a,b,\chi_{ 58 }(11,·)) \; at   a,b=\; a,b = e.g. 1,2