Properties

Label 58.41
Modulus 5858
Conductor 2929
Order 44
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(58, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([1]))
 
pari: [g,chi] = znchar(Mod(41,58))
 

Basic properties

Modulus: 5858
Conductor: 2929
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ29(12,)\chi_{29}(12,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 58.c

χ58(17,)\chi_{58}(17,\cdot) χ58(41,)\chi_{58}(41,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.0.24389.1

Values on generators

3131ii

Values

aa 1-11133557799111113131515171719192121
χ58(41,a) \chi_{ 58 }(41, a) 1-111ii1-1111-1ii1-1i-iiiiiii
sage: chi.jacobi_sum(n)
 
χ58(41,a)   \chi_{ 58 }(41,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ58(41,))   \tau_{ a }( \chi_{ 58 }(41,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ58(41,),χ58(n,))   J(\chi_{ 58 }(41,·),\chi_{ 58 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ58(41,))  K(a,b,\chi_{ 58 }(41,·)) \; at   a,b=\; a,b = e.g. 1,2