Properties

Label 580.439
Modulus $580$
Conductor $580$
Order $14$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(580, base_ring=CyclotomicField(14))
 
M = H._module
 
chi = DirichletCharacter(H, M([7,7,1]))
 
pari: [g,chi] = znchar(Mod(439,580))
 

Basic properties

Modulus: \(580\)
Conductor: \(580\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 580.y

\(\chi_{580}(179,\cdot)\) \(\chi_{580}(299,\cdot)\) \(\chi_{580}(399,\cdot)\) \(\chi_{580}(419,\cdot)\) \(\chi_{580}(439,\cdot)\) \(\chi_{580}(499,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.0.13133604752587010801920000000.1

Values on generators

\((291,117,321)\) → \((-1,-1,e\left(\frac{1}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(7\)\(9\)\(11\)\(13\)\(17\)\(19\)\(21\)\(23\)\(27\)
\( \chi_{ 580 }(439, a) \) \(-1\)\(1\)\(e\left(\frac{5}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{5}{7}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{11}{14}\right)\)\(1\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(e\left(\frac{3}{7}\right)\)\(e\left(\frac{1}{14}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 580 }(439,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 580 }(439,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 580 }(439,·),\chi_{ 580 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 580 }(439,·)) \;\) at \(\; a,b = \) e.g. 1,2