sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(580, base_ring=CyclotomicField(14))
M = H._module
chi = DirichletCharacter(H, M([7,7,3]))
pari:[g,chi] = znchar(Mod(499,580))
Modulus: | 580 | |
Conductor: | 580 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 14 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ580(179,⋅)
χ580(299,⋅)
χ580(399,⋅)
χ580(419,⋅)
χ580(439,⋅)
χ580(499,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(291,117,321) → (−1,−1,e(143))
a |
−1 | 1 | 3 | 7 | 9 | 11 | 13 | 17 | 19 | 21 | 23 | 27 |
χ580(499,a) |
−1 | 1 | e(141) | e(74) | e(71) | e(76) | e(145) | 1 | e(73) | e(149) | e(72) | e(143) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)