Properties

Label 585.bc
Modulus 585585
Conductor 117117
Order 66
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([1,0,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(56,585)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 585585
Conductor: 117117
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 66
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 117.m
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: 6.0.7308160119.2

Characters in Galois orbit

Character 1-1 11 22 44 77 88 1111 1414 1616 1717 1919 2222
χ585(56,)\chi_{585}(56,\cdot) 1-1 11 e(13)e\left(\frac{1}{3}\right) e(23)e\left(\frac{2}{3}\right) 1-1 11 e(13)e\left(\frac{1}{3}\right) e(56)e\left(\frac{5}{6}\right) e(13)e\left(\frac{1}{3}\right) e(56)e\left(\frac{5}{6}\right) e(56)e\left(\frac{5}{6}\right) e(23)e\left(\frac{2}{3}\right)
χ585(491,)\chi_{585}(491,\cdot) 1-1 11 e(23)e\left(\frac{2}{3}\right) e(13)e\left(\frac{1}{3}\right) 1-1 11 e(23)e\left(\frac{2}{3}\right) e(16)e\left(\frac{1}{6}\right) e(23)e\left(\frac{2}{3}\right) e(16)e\left(\frac{1}{6}\right) e(16)e\left(\frac{1}{6}\right) e(13)e\left(\frac{1}{3}\right)