⌂
→
Characters
→
Dirichlet
→
585
→
bc
Citation
·
Feedback
·
Hide Menu
Dirichlet character orbit 585.bc
Introduction
Overview
Random
Universe
Knowledge
L-functions
Rational
All
Modular forms
Classical
Maass
Hilbert
Bianchi
Varieties
Elliptic curves over
Q
\Q
Q
Elliptic curves over
Q
(
α
)
\Q(\alpha)
Q
(
α
)
Genus 2 curves over
Q
\Q
Q
Higher genus families
Abelian varieties over
F
q
\F_{q}
F
q
Belyi maps
Fields
Number fields
p
p
p
-adic fields
Representations
Dirichlet characters
Artin representations
Groups
Galois groups
Sato-Tate groups
Database
↑
Properties
Label
585.bc
Modulus
585
585
5
8
5
Conductor
117
117
1
1
7
Order
6
6
6
Real
no
Primitive
no
Minimal
yes
Parity
odd
Related objects
Character group
Value field
Primitive orbit 117.m
Downloads
Underlying data
Learn more
Source and acknowledgments
Completeness of the data
Reliability of the data
Dirichlet character labels
Dirichlet character orbit labels
Show commands:
Pari/GP
/
SageMath
sage:
from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(585, base_ring=CyclotomicField(6)) M = H._module chi = DirichletCharacter(H, M([1,0,1])) chi.galois_orbit()
pari:
[g,chi] = znchar(Mod(56,585)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus
:
585
585
5
8
5
Conductor
:
117
117
1
1
7
sage:
chi.conductor()
pari:
znconreyconductor(g,chi)
Order
:
6
6
6
sage:
chi.multiplicative_order()
pari:
charorder(g,chi)
Real
:
no
Primitive
:
no, induced from
117.m
sage:
chi.is_primitive()
pari:
#znconreyconductor(g,chi)==1
Minimal
:
yes
Parity
:
odd
sage:
chi.is_odd()
pari:
zncharisodd(g,chi)
Related number fields
Field of values
:
Q
(
ζ
3
)
\mathbb{Q}(\zeta_3)
Q
(
ζ
3
)
Fixed field
:
6.0.7308160119.2
Characters
in Galois orbit
Character
−
1
-1
−
1
1
1
1
2
2
2
4
4
4
7
7
7
8
8
8
11
11
1
1
14
14
1
4
16
16
1
6
17
17
1
7
19
19
1
9
22
22
2
2
χ
585
(
56
,
⋅
)
\chi_{585}(56,\cdot)
χ
5
8
5
(
5
6
,
⋅
)
−
1
-1
−
1
1
1
1
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
−
1
-1
−
1
1
1
1
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)
e
(
5
6
)
e\left(\frac{5}{6}\right)
e
(
6
5
)
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)
e
(
5
6
)
e\left(\frac{5}{6}\right)
e
(
6
5
)
e
(
5
6
)
e\left(\frac{5}{6}\right)
e
(
6
5
)
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
χ
585
(
491
,
⋅
)
\chi_{585}(491,\cdot)
χ
5
8
5
(
4
9
1
,
⋅
)
−
1
-1
−
1
1
1
1
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)
−
1
-1
−
1
1
1
1
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
e
(
1
6
)
e\left(\frac{1}{6}\right)
e
(
6
1
)
e
(
2
3
)
e\left(\frac{2}{3}\right)
e
(
3
2
)
e
(
1
6
)
e\left(\frac{1}{6}\right)
e
(
6
1
)
e
(
1
6
)
e\left(\frac{1}{6}\right)
e
(
6
1
)
e
(
1
3
)
e\left(\frac{1}{3}\right)
e
(
3
1
)