Properties

Label 5850.3551
Modulus $5850$
Conductor $117$
Order $12$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,0,1]))
 
pari: [g,chi] = znchar(Mod(3551,5850))
 

Basic properties

Modulus: \(5850\)
Conductor: \(117\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{117}(41,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5850.df

\(\chi_{5850}(401,\cdot)\) \(\chi_{5850}(2801,\cdot)\) \(\chi_{5850}(3551,\cdot)\) \(\chi_{5850}(5051,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.694319656224247224093.1

Values on generators

\((3251,3277,2251)\) → \((e\left(\frac{5}{6}\right),1,e\left(\frac{1}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\( \chi_{ 5850 }(3551, a) \) \(1\)\(1\)\(i\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{5}{12}\right)\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{12}\right)\)\(i\)\(-1\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 5850 }(3551,a) \;\) at \(\;a = \) e.g. 2