Properties

Label 5850.3551
Modulus 58505850
Conductor 117117
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,0,1]))
 
pari: [g,chi] = znchar(Mod(3551,5850))
 

Basic properties

Modulus: 58505850
Conductor: 117117
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ117(41,)\chi_{117}(41,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5850.df

χ5850(401,)\chi_{5850}(401,\cdot) χ5850(2801,)\chi_{5850}(2801,\cdot) χ5850(3551,)\chi_{5850}(3551,\cdot) χ5850(5051,)\chi_{5850}(5051,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.694319656224247224093.1

Values on generators

(3251,3277,2251)(3251,3277,2251)(e(56),1,e(112))(e\left(\frac{5}{6}\right),1,e\left(\frac{1}{12}\right))

First values

aa 1-11177111117171919232329293131373741414343
χ5850(3551,a) \chi_{ 5850 }(3551, a) 1111iie(512)e\left(\frac{5}{12}\right)e(23)e\left(\frac{2}{3}\right)e(512)e\left(\frac{5}{12}\right)11e(16)e\left(\frac{1}{6}\right)e(512)e\left(\frac{5}{12}\right)e(712)e\left(\frac{7}{12}\right)ii1-1
sage: chi.jacobi_sum(n)
 
χ5850(3551,a)   \chi_{ 5850 }(3551,a) \; at   a=\;a = e.g. 2