Properties

Label 5850.4969
Modulus 58505850
Conductor 325325
Order 3030
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,27,10]))
 
pari: [g,chi] = znchar(Mod(4969,5850))
 

Basic properties

Modulus: 58505850
Conductor: 325325
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ325(94,)\chi_{325}(94,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 5850.fo

χ5850(289,)\chi_{5850}(289,\cdot) χ5850(919,)\chi_{5850}(919,\cdot) χ5850(1459,)\chi_{5850}(1459,\cdot) χ5850(2089,)\chi_{5850}(2089,\cdot) χ5850(2629,)\chi_{5850}(2629,\cdot) χ5850(3259,)\chi_{5850}(3259,\cdot) χ5850(4429,)\chi_{5850}(4429,\cdot) χ5850(4969,)\chi_{5850}(4969,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: Number field defined by a degree 30 polynomial

Values on generators

(3251,3277,2251)(3251,3277,2251)(1,e(910),e(13))(1,e\left(\frac{9}{10}\right),e\left(\frac{1}{3}\right))

First values

aa 1-11177111117171919232329293131373741414343
χ5850(4969,a) \chi_{ 5850 }(4969, a) 1111e(16)e\left(\frac{1}{6}\right)e(1115)e\left(\frac{11}{15}\right)e(1130)e\left(\frac{11}{30}\right)e(1315)e\left(\frac{13}{15}\right)e(730)e\left(\frac{7}{30}\right)e(215)e\left(\frac{2}{15}\right)e(15)e\left(\frac{1}{5}\right)e(1330)e\left(\frac{13}{30}\right)e(1415)e\left(\frac{14}{15}\right)e(16)e\left(\frac{1}{6}\right)
sage: chi.jacobi_sum(n)
 
χ5850(4969,a)   \chi_{ 5850 }(4969,a) \; at   a=\;a = e.g. 2