Properties

Label 5850.dr
Modulus 58505850
Conductor 585585
Order 1212
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,9,8]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(893,5850))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 58505850
Conductor: 585585
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 585.dk
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: 12.12.617247646136997205078125.1

Characters in Galois orbit

Character 1-1 11 77 1111 1717 1919 2323 2929 3131 3737 4141 4343
χ5850(893,)\chi_{5850}(893,\cdot) 11 11 i-i e(56)e\left(\frac{5}{6}\right) e(712)e\left(\frac{7}{12}\right) e(56)e\left(\frac{5}{6}\right) i-i e(13)e\left(\frac{1}{3}\right) e(13)e\left(\frac{1}{3}\right) e(512)e\left(\frac{5}{12}\right) 1-1 ii
χ5850(2057,)\chi_{5850}(2057,\cdot) 11 11 ii e(16)e\left(\frac{1}{6}\right) e(512)e\left(\frac{5}{12}\right) e(16)e\left(\frac{1}{6}\right) ii e(23)e\left(\frac{2}{3}\right) e(23)e\left(\frac{2}{3}\right) e(712)e\left(\frac{7}{12}\right) 1-1 i-i
χ5850(2993,)\chi_{5850}(2993,\cdot) 11 11 i-i e(16)e\left(\frac{1}{6}\right) e(1112)e\left(\frac{11}{12}\right) e(16)e\left(\frac{1}{6}\right) i-i e(23)e\left(\frac{2}{3}\right) e(23)e\left(\frac{2}{3}\right) e(112)e\left(\frac{1}{12}\right) 1-1 ii
χ5850(5807,)\chi_{5850}(5807,\cdot) 11 11 ii e(56)e\left(\frac{5}{6}\right) e(112)e\left(\frac{1}{12}\right) e(56)e\left(\frac{5}{6}\right) ii e(13)e\left(\frac{1}{3}\right) e(13)e\left(\frac{1}{3}\right) e(1112)e\left(\frac{11}{12}\right) 1-1 i-i