Properties

Label 5850.ee
Modulus $5850$
Conductor $2925$
Order $15$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,6,20]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(841,5850))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(5850\)
Conductor: \(2925\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(15\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2925.ee
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: Number field defined by a degree 15 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{5850}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{5850}(1771,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{5850}(2011,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{5850}(2941,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{5850}(3181,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{5850}(4111,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{5850}(5281,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{5850}(5521,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{2}{3}\right)\)