Properties

Label 5850.gi
Modulus 58505850
Conductor 29252925
Order 6060
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5850, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([50,21,20]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(653,5850))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: 58505850
Conductor: 29252925
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 6060
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2925.gh
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: Q(ζ60)\Q(\zeta_{60})
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character 1-1 11 77 1111 1717 1919 2323 2929 3131 3737 4141 4343
χ5850(653,)\chi_{5850}(653,\cdot) 11 11 i-i e(2330)e\left(\frac{23}{30}\right) e(4360)e\left(\frac{43}{60}\right) e(2930)e\left(\frac{29}{30}\right) e(720)e\left(\frac{7}{20}\right) e(1315)e\left(\frac{13}{15}\right) e(715)e\left(\frac{7}{15}\right) e(2960)e\left(\frac{29}{60}\right) e(910)e\left(\frac{9}{10}\right) ii
χ5850(887,)\chi_{5850}(887,\cdot) 11 11 ii e(1130)e\left(\frac{11}{30}\right) e(160)e\left(\frac{1}{60}\right) e(2330)e\left(\frac{23}{30}\right) e(920)e\left(\frac{9}{20}\right) e(115)e\left(\frac{1}{15}\right) e(415)e\left(\frac{4}{15}\right) e(2360)e\left(\frac{23}{60}\right) e(310)e\left(\frac{3}{10}\right) i-i
χ5850(1127,)\chi_{5850}(1127,\cdot) 11 11 ii e(1930)e\left(\frac{19}{30}\right) e(2960)e\left(\frac{29}{60}\right) e(730)e\left(\frac{7}{30}\right) e(120)e\left(\frac{1}{20}\right) e(1415)e\left(\frac{14}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(760)e\left(\frac{7}{60}\right) e(710)e\left(\frac{7}{10}\right) i-i
χ5850(1823,)\chi_{5850}(1823,\cdot) 11 11 i-i e(2930)e\left(\frac{29}{30}\right) e(1960)e\left(\frac{19}{60}\right) e(1730)e\left(\frac{17}{30}\right) e(1120)e\left(\frac{11}{20}\right) e(415)e\left(\frac{4}{15}\right) e(115)e\left(\frac{1}{15}\right) e(1760)e\left(\frac{17}{60}\right) e(710)e\left(\frac{7}{10}\right) ii
χ5850(2063,)\chi_{5850}(2063,\cdot) 11 11 i-i e(130)e\left(\frac{1}{30}\right) e(1160)e\left(\frac{11}{60}\right) e(1330)e\left(\frac{13}{30}\right) e(1920)e\left(\frac{19}{20}\right) e(1115)e\left(\frac{11}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(1360)e\left(\frac{13}{60}\right) e(310)e\left(\frac{3}{10}\right) ii
χ5850(2297,)\chi_{5850}(2297,\cdot) 11 11 ii e(1330)e\left(\frac{13}{30}\right) e(5360)e\left(\frac{53}{60}\right) e(1930)e\left(\frac{19}{30}\right) e(1720)e\left(\frac{17}{20}\right) e(815)e\left(\frac{8}{15}\right) e(215)e\left(\frac{2}{15}\right) e(1960)e\left(\frac{19}{60}\right) e(910)e\left(\frac{9}{10}\right) i-i
χ5850(3227,)\chi_{5850}(3227,\cdot) 11 11 ii e(2930)e\left(\frac{29}{30}\right) e(4960)e\left(\frac{49}{60}\right) e(1730)e\left(\frac{17}{30}\right) e(120)e\left(\frac{1}{20}\right) e(415)e\left(\frac{4}{15}\right) e(115)e\left(\frac{1}{15}\right) e(4760)e\left(\frac{47}{60}\right) e(710)e\left(\frac{7}{10}\right) i-i
χ5850(3233,)\chi_{5850}(3233,\cdot) 11 11 i-i e(730)e\left(\frac{7}{30}\right) e(4760)e\left(\frac{47}{60}\right) e(130)e\left(\frac{1}{30}\right) e(320)e\left(\frac{3}{20}\right) e(215)e\left(\frac{2}{15}\right) e(815)e\left(\frac{8}{15}\right) e(160)e\left(\frac{1}{60}\right) e(110)e\left(\frac{1}{10}\right) ii
χ5850(3467,)\chi_{5850}(3467,\cdot) 11 11 ii e(730)e\left(\frac{7}{30}\right) e(1760)e\left(\frac{17}{60}\right) e(130)e\left(\frac{1}{30}\right) e(1320)e\left(\frac{13}{20}\right) e(215)e\left(\frac{2}{15}\right) e(815)e\left(\frac{8}{15}\right) e(3160)e\left(\frac{31}{60}\right) e(110)e\left(\frac{1}{10}\right) i-i
χ5850(4163,)\chi_{5850}(4163,\cdot) 11 11 i-i e(1130)e\left(\frac{11}{30}\right) e(3160)e\left(\frac{31}{60}\right) e(2330)e\left(\frac{23}{30}\right) e(1920)e\left(\frac{19}{20}\right) e(115)e\left(\frac{1}{15}\right) e(415)e\left(\frac{4}{15}\right) e(5360)e\left(\frac{53}{60}\right) e(310)e\left(\frac{3}{10}\right) ii
χ5850(4397,)\chi_{5850}(4397,\cdot) 11 11 ii e(2330)e\left(\frac{23}{30}\right) e(1360)e\left(\frac{13}{60}\right) e(2930)e\left(\frac{29}{30}\right) e(1720)e\left(\frac{17}{20}\right) e(1315)e\left(\frac{13}{15}\right) e(715)e\left(\frac{7}{15}\right) e(5960)e\left(\frac{59}{60}\right) e(910)e\left(\frac{9}{10}\right) i-i
χ5850(4403,)\chi_{5850}(4403,\cdot) 11 11 i-i e(1330)e\left(\frac{13}{30}\right) e(2360)e\left(\frac{23}{60}\right) e(1930)e\left(\frac{19}{30}\right) e(720)e\left(\frac{7}{20}\right) e(815)e\left(\frac{8}{15}\right) e(215)e\left(\frac{2}{15}\right) e(4960)e\left(\frac{49}{60}\right) e(910)e\left(\frac{9}{10}\right) ii
χ5850(4637,)\chi_{5850}(4637,\cdot) 11 11 ii e(130)e\left(\frac{1}{30}\right) e(4160)e\left(\frac{41}{60}\right) e(1330)e\left(\frac{13}{30}\right) e(920)e\left(\frac{9}{20}\right) e(1115)e\left(\frac{11}{15}\right) e(1415)e\left(\frac{14}{15}\right) e(4360)e\left(\frac{43}{60}\right) e(310)e\left(\frac{3}{10}\right) i-i
χ5850(5333,)\chi_{5850}(5333,\cdot) 11 11 i-i e(1730)e\left(\frac{17}{30}\right) e(760)e\left(\frac{7}{60}\right) e(1130)e\left(\frac{11}{30}\right) e(320)e\left(\frac{3}{20}\right) e(715)e\left(\frac{7}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(4160)e\left(\frac{41}{60}\right) e(110)e\left(\frac{1}{10}\right) ii
χ5850(5567,)\chi_{5850}(5567,\cdot) 11 11 ii e(1730)e\left(\frac{17}{30}\right) e(3760)e\left(\frac{37}{60}\right) e(1130)e\left(\frac{11}{30}\right) e(1320)e\left(\frac{13}{20}\right) e(715)e\left(\frac{7}{15}\right) e(1315)e\left(\frac{13}{15}\right) e(1160)e\left(\frac{11}{60}\right) e(110)e\left(\frac{1}{10}\right) i-i
χ5850(5573,)\chi_{5850}(5573,\cdot) 11 11 i-i e(1930)e\left(\frac{19}{30}\right) e(5960)e\left(\frac{59}{60}\right) e(730)e\left(\frac{7}{30}\right) e(1120)e\left(\frac{11}{20}\right) e(1415)e\left(\frac{14}{15}\right) e(1115)e\left(\frac{11}{15}\right) e(3760)e\left(\frac{37}{60}\right) e(710)e\left(\frac{7}{10}\right) ii