Properties

Label 59.10
Modulus 5959
Conductor 5959
Order 5858
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(59, base_ring=CyclotomicField(58))
 
M = H._module
 
chi = DirichletCharacter(H, M([7]))
 
pari: [g,chi] = znchar(Mod(10,59))
 

Basic properties

Modulus: 5959
Conductor: 5959
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 5858
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 59.d

χ59(2,)\chi_{59}(2,\cdot) χ59(6,)\chi_{59}(6,\cdot) χ59(8,)\chi_{59}(8,\cdot) χ59(10,)\chi_{59}(10,\cdot) χ59(11,)\chi_{59}(11,\cdot) χ59(13,)\chi_{59}(13,\cdot) χ59(14,)\chi_{59}(14,\cdot) χ59(18,)\chi_{59}(18,\cdot) χ59(23,)\chi_{59}(23,\cdot) χ59(24,)\chi_{59}(24,\cdot) χ59(30,)\chi_{59}(30,\cdot) χ59(31,)\chi_{59}(31,\cdot) χ59(32,)\chi_{59}(32,\cdot) χ59(33,)\chi_{59}(33,\cdot) χ59(34,)\chi_{59}(34,\cdot) χ59(37,)\chi_{59}(37,\cdot) χ59(38,)\chi_{59}(38,\cdot) χ59(39,)\chi_{59}(39,\cdot) χ59(40,)\chi_{59}(40,\cdot) χ59(42,)\chi_{59}(42,\cdot) χ59(43,)\chi_{59}(43,\cdot) χ59(44,)\chi_{59}(44,\cdot) χ59(47,)\chi_{59}(47,\cdot) χ59(50,)\chi_{59}(50,\cdot) χ59(52,)\chi_{59}(52,\cdot) χ59(54,)\chi_{59}(54,\cdot) χ59(55,)\chi_{59}(55,\cdot) χ59(56,)\chi_{59}(56,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ29)\Q(\zeta_{29})
Fixed field: Number field defined by a degree 58 polynomial

Values on generators

22e(758)e\left(\frac{7}{58}\right)

First values

aa 1-111223344556677889910101111
χ59(10,a) \chi_{ 59 }(10, a) 1-111e(758)e\left(\frac{7}{58}\right)e(129)e\left(\frac{1}{29}\right)e(729)e\left(\frac{7}{29}\right)e(2129)e\left(\frac{21}{29}\right)e(958)e\left(\frac{9}{58}\right)e(529)e\left(\frac{5}{29}\right)e(2158)e\left(\frac{21}{58}\right)e(229)e\left(\frac{2}{29}\right)e(4958)e\left(\frac{49}{58}\right)e(158)e\left(\frac{1}{58}\right)
sage: chi.jacobi_sum(n)
 
χ59(10,a)   \chi_{ 59 }(10,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ59(10,))   \tau_{ a }( \chi_{ 59 }(10,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ59(10,),χ59(n,))   J(\chi_{ 59 }(10,·),\chi_{ 59 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ59(10,))  K(a,b,\chi_{ 59 }(10,·)) \; at   a,b=\; a,b = e.g. 1,2