Properties

Label 592.355
Modulus $592$
Conductor $592$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,27,31]))
 
pari: [g,chi] = znchar(Mod(355,592))
 

Basic properties

Modulus: \(592\)
Conductor: \(592\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 592.ca

\(\chi_{592}(19,\cdot)\) \(\chi_{592}(35,\cdot)\) \(\chi_{592}(187,\cdot)\) \(\chi_{592}(203,\cdot)\) \(\chi_{592}(227,\cdot)\) \(\chi_{592}(283,\cdot)\) \(\chi_{592}(355,\cdot)\) \(\chi_{592}(387,\cdot)\) \(\chi_{592}(427,\cdot)\) \(\chi_{592}(459,\cdot)\) \(\chi_{592}(531,\cdot)\) \(\chi_{592}(587,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.4886860176107258124616704873602845327686728999915307588219200292503475176863258640384.1

Values on generators

\((223,149,113)\) → \((-1,-i,e\left(\frac{31}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 592 }(355, a) \) \(1\)\(1\)\(e\left(\frac{5}{36}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{25}{36}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 592 }(355,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 592 }(355,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 592 }(355,·),\chi_{ 592 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 592 }(355,·)) \;\) at \(\; a,b = \) e.g. 1,2