Properties

Label 592.ch
Modulus $592$
Conductor $296$
Order $36$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(592, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,18,1]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(39,592))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(592\)
Conductor: \(296\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 296.bj
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.138892919952333446776057851184385905517238171566853781889085447929331712.1

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(21\)
\(\chi_{592}(39,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{592}(55,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{592}(87,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{592}(135,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{592}(167,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{8}{9}\right)\)
\(\chi_{592}(183,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{592}(279,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{592}(311,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{592}(375,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{592}(439,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{9}\right)\)
\(\chi_{592}(503,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{4}{9}\right)\)
\(\chi_{592}(535,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{9}\right)\)