Properties

Label 593.162
Modulus $593$
Conductor $593$
Order $37$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(593, base_ring=CyclotomicField(74))
 
M = H._module
 
chi = DirichletCharacter(H, M([54]))
 
pari: [g,chi] = znchar(Mod(162,593))
 

Basic properties

Modulus: \(593\)
Conductor: \(593\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(37\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 593.f

\(\chi_{593}(16,\cdot)\) \(\chi_{593}(42,\cdot)\) \(\chi_{593}(60,\cdot)\) \(\chi_{593}(62,\cdot)\) \(\chi_{593}(78,\cdot)\) \(\chi_{593}(79,\cdot)\) \(\chi_{593}(92,\cdot)\) \(\chi_{593}(148,\cdot)\) \(\chi_{593}(152,\cdot)\) \(\chi_{593}(154,\cdot)\) \(\chi_{593}(162,\cdot)\) \(\chi_{593}(183,\cdot)\) \(\chi_{593}(220,\cdot)\) \(\chi_{593}(225,\cdot)\) \(\chi_{593}(232,\cdot)\) \(\chi_{593}(256,\cdot)\) \(\chi_{593}(258,\cdot)\) \(\chi_{593}(277,\cdot)\) \(\chi_{593}(281,\cdot)\) \(\chi_{593}(286,\cdot)\) \(\chi_{593}(306,\cdot)\) \(\chi_{593}(311,\cdot)\) \(\chi_{593}(345,\cdot)\) \(\chi_{593}(353,\cdot)\) \(\chi_{593}(367,\cdot)\) \(\chi_{593}(399,\cdot)\) \(\chi_{593}(425,\cdot)\) \(\chi_{593}(454,\cdot)\) \(\chi_{593}(529,\cdot)\) \(\chi_{593}(535,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{37})$
Fixed field: Number field defined by a degree 37 polynomial

Values on generators

\(3\) → \(e\left(\frac{27}{37}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 593 }(162, a) \) \(1\)\(1\)\(e\left(\frac{12}{37}\right)\)\(e\left(\frac{27}{37}\right)\)\(e\left(\frac{24}{37}\right)\)\(e\left(\frac{15}{37}\right)\)\(e\left(\frac{2}{37}\right)\)\(e\left(\frac{19}{37}\right)\)\(e\left(\frac{36}{37}\right)\)\(e\left(\frac{17}{37}\right)\)\(e\left(\frac{27}{37}\right)\)\(e\left(\frac{18}{37}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 593 }(162,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 593 }(162,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 593 }(162,·),\chi_{ 593 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 593 }(162,·)) \;\) at \(\; a,b = \) e.g. 1,2