Properties

Label 600.113
Modulus $600$
Conductor $75$
Order $20$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(600, base_ring=CyclotomicField(20))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,10,19]))
 
pari: [g,chi] = znchar(Mod(113,600))
 

Basic properties

Modulus: \(600\)
Conductor: \(75\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(20\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{75}(38,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 600.bu

\(\chi_{600}(17,\cdot)\) \(\chi_{600}(113,\cdot)\) \(\chi_{600}(137,\cdot)\) \(\chi_{600}(233,\cdot)\) \(\chi_{600}(353,\cdot)\) \(\chi_{600}(377,\cdot)\) \(\chi_{600}(473,\cdot)\) \(\chi_{600}(497,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: \(\Q(\zeta_{75})^+\)

Values on generators

\((151,301,401,577)\) → \((1,1,-1,e\left(\frac{19}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 600 }(113, a) \) \(1\)\(1\)\(-i\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{19}{20}\right)\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{3}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 600 }(113,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 600 }(113,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 600 }(113,·),\chi_{ 600 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 600 }(113,·)) \;\) at \(\; a,b = \) e.g. 1,2