sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(608, base_ring=CyclotomicField(72))
M = H._module
chi = DirichletCharacter(H, M([36,45,28]))
pari:[g,chi] = znchar(Mod(299,608))
Modulus: | 608 | |
Conductor: | 608 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 72 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ608(3,⋅)
χ608(51,⋅)
χ608(59,⋅)
χ608(67,⋅)
χ608(91,⋅)
χ608(147,⋅)
χ608(155,⋅)
χ608(203,⋅)
χ608(211,⋅)
χ608(219,⋅)
χ608(243,⋅)
χ608(299,⋅)
χ608(307,⋅)
χ608(355,⋅)
χ608(363,⋅)
χ608(371,⋅)
χ608(395,⋅)
χ608(451,⋅)
χ608(459,⋅)
χ608(507,⋅)
χ608(515,⋅)
χ608(523,⋅)
χ608(547,⋅)
χ608(603,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(191,229,97) → (−1,e(85),e(187))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 21 | 23 |
χ608(299,a) |
1 | 1 | e(7231) | e(7261) | e(121) | e(3631) | e(247) | e(7223) | e(185) | e(187) | e(7237) | e(361) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)