Properties

Label 608.155
Modulus $608$
Conductor $608$
Order $72$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(608, base_ring=CyclotomicField(72))
 
M = H._module
 
chi = DirichletCharacter(H, M([36,9,52]))
 
pari: [g,chi] = znchar(Mod(155,608))
 

Basic properties

Modulus: \(608\)
Conductor: \(608\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(72\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 608.bt

\(\chi_{608}(3,\cdot)\) \(\chi_{608}(51,\cdot)\) \(\chi_{608}(59,\cdot)\) \(\chi_{608}(67,\cdot)\) \(\chi_{608}(91,\cdot)\) \(\chi_{608}(147,\cdot)\) \(\chi_{608}(155,\cdot)\) \(\chi_{608}(203,\cdot)\) \(\chi_{608}(211,\cdot)\) \(\chi_{608}(219,\cdot)\) \(\chi_{608}(243,\cdot)\) \(\chi_{608}(299,\cdot)\) \(\chi_{608}(307,\cdot)\) \(\chi_{608}(355,\cdot)\) \(\chi_{608}(363,\cdot)\) \(\chi_{608}(371,\cdot)\) \(\chi_{608}(395,\cdot)\) \(\chi_{608}(451,\cdot)\) \(\chi_{608}(459,\cdot)\) \(\chi_{608}(507,\cdot)\) \(\chi_{608}(515,\cdot)\) \(\chi_{608}(523,\cdot)\) \(\chi_{608}(547,\cdot)\) \(\chi_{608}(603,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{72})$
Fixed field: Number field defined by a degree 72 polynomial

Values on generators

\((191,229,97)\) → \((-1,e\left(\frac{1}{8}\right),e\left(\frac{13}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(21\)\(23\)
\( \chi_{ 608 }(155, a) \) \(1\)\(1\)\(e\left(\frac{19}{72}\right)\)\(e\left(\frac{49}{72}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{19}{24}\right)\)\(e\left(\frac{35}{72}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{25}{72}\right)\)\(e\left(\frac{25}{36}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 608 }(155,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 608 }(155,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 608 }(155,·),\chi_{ 608 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 608 }(155,·)) \;\) at \(\; a,b = \) e.g. 1,2