Properties

Label 625.41
Modulus $625$
Conductor $625$
Order $125$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(625, base_ring=CyclotomicField(250))
 
M = H._module
 
chi = DirichletCharacter(H, M([22]))
 
pari: [g,chi] = znchar(Mod(41,625))
 

Basic properties

Modulus: \(625\)
Conductor: \(625\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(125\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 625.j

\(\chi_{625}(6,\cdot)\) \(\chi_{625}(11,\cdot)\) \(\chi_{625}(16,\cdot)\) \(\chi_{625}(21,\cdot)\) \(\chi_{625}(31,\cdot)\) \(\chi_{625}(36,\cdot)\) \(\chi_{625}(41,\cdot)\) \(\chi_{625}(46,\cdot)\) \(\chi_{625}(56,\cdot)\) \(\chi_{625}(61,\cdot)\) \(\chi_{625}(66,\cdot)\) \(\chi_{625}(71,\cdot)\) \(\chi_{625}(81,\cdot)\) \(\chi_{625}(86,\cdot)\) \(\chi_{625}(91,\cdot)\) \(\chi_{625}(96,\cdot)\) \(\chi_{625}(106,\cdot)\) \(\chi_{625}(111,\cdot)\) \(\chi_{625}(116,\cdot)\) \(\chi_{625}(121,\cdot)\) \(\chi_{625}(131,\cdot)\) \(\chi_{625}(136,\cdot)\) \(\chi_{625}(141,\cdot)\) \(\chi_{625}(146,\cdot)\) \(\chi_{625}(156,\cdot)\) \(\chi_{625}(161,\cdot)\) \(\chi_{625}(166,\cdot)\) \(\chi_{625}(171,\cdot)\) \(\chi_{625}(181,\cdot)\) \(\chi_{625}(186,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{125})$
Fixed field: Number field defined by a degree 125 polynomial (not computed)

Values on generators

\(2\) → \(e\left(\frac{11}{125}\right)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(11\)\(12\)\(13\)
\( \chi_{ 625 }(41, a) \) \(1\)\(1\)\(e\left(\frac{11}{125}\right)\)\(e\left(\frac{52}{125}\right)\)\(e\left(\frac{22}{125}\right)\)\(e\left(\frac{63}{125}\right)\)\(e\left(\frac{17}{25}\right)\)\(e\left(\frac{33}{125}\right)\)\(e\left(\frac{104}{125}\right)\)\(e\left(\frac{111}{125}\right)\)\(e\left(\frac{74}{125}\right)\)\(e\left(\frac{29}{125}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 625 }(41,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 625 }(41,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 625 }(41,·),\chi_{ 625 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 625 }(41,·)) \;\) at \(\; a,b = \) e.g. 1,2