Properties

Label 629.10
Modulus $629$
Conductor $629$
Order $48$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(629, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,32]))
 
pari: [g,chi] = znchar(Mod(10,629))
 

Basic properties

Modulus: \(629\)
Conductor: \(629\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 629.br

\(\chi_{629}(10,\cdot)\) \(\chi_{629}(63,\cdot)\) \(\chi_{629}(158,\cdot)\) \(\chi_{629}(211,\cdot)\) \(\chi_{629}(232,\cdot)\) \(\chi_{629}(248,\cdot)\) \(\chi_{629}(269,\cdot)\) \(\chi_{629}(343,\cdot)\) \(\chi_{629}(380,\cdot)\) \(\chi_{629}(396,\cdot)\) \(\chi_{629}(454,\cdot)\) \(\chi_{629}(470,\cdot)\) \(\chi_{629}(507,\cdot)\) \(\chi_{629}(581,\cdot)\) \(\chi_{629}(602,\cdot)\) \(\chi_{629}(618,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((445,409)\) → \((e\left(\frac{3}{16}\right),e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 629 }(10, a) \) \(-1\)\(1\)\(e\left(\frac{7}{24}\right)\)\(e\left(\frac{25}{48}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{13}{48}\right)\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{19}{48}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{5}{16}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 629 }(10,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 629 }(10,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 629 }(10,·),\chi_{ 629 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 629 }(10,·)) \;\) at \(\; a,b = \) e.g. 1,2