Properties

Label 629.13
Modulus $629$
Conductor $629$
Order $36$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(629, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([9,11]))
 
pari: [g,chi] = znchar(Mod(13,629))
 

Basic properties

Modulus: \(629\)
Conductor: \(629\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 629.bp

\(\chi_{629}(13,\cdot)\) \(\chi_{629}(55,\cdot)\) \(\chi_{629}(89,\cdot)\) \(\chi_{629}(106,\cdot)\) \(\chi_{629}(183,\cdot)\) \(\chi_{629}(242,\cdot)\) \(\chi_{629}(387,\cdot)\) \(\chi_{629}(446,\cdot)\) \(\chi_{629}(523,\cdot)\) \(\chi_{629}(540,\cdot)\) \(\chi_{629}(574,\cdot)\) \(\chi_{629}(616,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.0.12858230878574949858207932230482249727234181545281621536549998606426152894209663387757389.1

Values on generators

\((445,409)\) → \((i,e\left(\frac{11}{36}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 629 }(13, a) \) \(-1\)\(1\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{7}{36}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{5}{18}\right)\)\(1\)\(e\left(\frac{19}{36}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{1}{12}\right)\)\(e\left(\frac{11}{12}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 629 }(13,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 629 }(13,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 629 }(13,·),\chi_{ 629 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 629 }(13,·)) \;\) at \(\; a,b = \) e.g. 1,2