sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(629, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([9,11]))
pari:[g,chi] = znchar(Mod(13,629))
Modulus: | 629 | |
Conductor: | 629 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 36 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ629(13,⋅)
χ629(55,⋅)
χ629(89,⋅)
χ629(106,⋅)
χ629(183,⋅)
χ629(242,⋅)
χ629(387,⋅)
χ629(446,⋅)
χ629(523,⋅)
χ629(540,⋅)
χ629(574,⋅)
χ629(616,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(445,409) → (i,e(3611))
a |
−1 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
χ629(13,a) |
−1 | 1 | e(3629) | e(367) | e(1811) | e(185) | 1 | e(3619) | e(125) | e(187) | e(121) | e(1211) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)