from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6300, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([0,10,18,10]))
pari: [g,chi] = znchar(Mod(121,6300))
Basic properties
Modulus: | \(6300\) | |
Conductor: | \(1575\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(15\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | no, induced from \(\chi_{1575}(121,\cdot)\) | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 6300.fj
\(\chi_{6300}(121,\cdot)\) \(\chi_{6300}(781,\cdot)\) \(\chi_{6300}(1381,\cdot)\) \(\chi_{6300}(2041,\cdot)\) \(\chi_{6300}(2641,\cdot)\) \(\chi_{6300}(4561,\cdot)\) \(\chi_{6300}(5161,\cdot)\) \(\chi_{6300}(5821,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 15 polynomial |
Values on generators
\((3151,2801,3277,3601)\) → \((1,e\left(\frac{1}{3}\right),e\left(\frac{3}{5}\right),e\left(\frac{1}{3}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 6300 }(121, a) \) | \(1\) | \(1\) | \(e\left(\frac{4}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{2}{15}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{4}{5}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{1}{3}\right)\) |
sage: chi.jacobi_sum(n)