Properties

Label 6336.fh
Modulus $6336$
Conductor $2112$
Order $80$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6336, base_ring=CyclotomicField(80))
 
M = H._module
 
chi = DirichletCharacter(H, M([40,75,40,64]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(179,6336))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(6336\)
Conductor: \(2112\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(80\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 2112.cv
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{80})$
Fixed field: Number field defined by a degree 80 polynomial

First 31 of 32 characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(13\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{6336}(179,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{9}{80}\right)\)
\(\chi_{6336}(251,\cdot)\) \(1\) \(1\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{23}{80}\right)\)
\(\chi_{6336}(323,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{21}{80}\right)\)
\(\chi_{6336}(467,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{80}\right)\)
\(\chi_{6336}(971,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{19}{80}\right)\)
\(\chi_{6336}(1043,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{33}{80}\right)\)
\(\chi_{6336}(1115,\cdot)\) \(1\) \(1\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{31}{80}\right)\)
\(\chi_{6336}(1259,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{27}{80}\right)\)
\(\chi_{6336}(1763,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{29}{80}\right)\)
\(\chi_{6336}(1835,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{43}{80}\right)\)
\(\chi_{6336}(1907,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{41}{80}\right)\)
\(\chi_{6336}(2051,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{37}{80}\right)\)
\(\chi_{6336}(2555,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{39}{80}\right)\)
\(\chi_{6336}(2627,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{53}{80}\right)\)
\(\chi_{6336}(2699,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{27}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{51}{80}\right)\)
\(\chi_{6336}(2843,\cdot)\) \(1\) \(1\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{51}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{47}{80}\right)\)
\(\chi_{6336}(3347,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{77}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{49}{80}\right)\)
\(\chi_{6336}(3419,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{13}{40}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{37}{40}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{63}{80}\right)\)
\(\chi_{6336}(3491,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{61}{80}\right)\)
\(\chi_{6336}(3635,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{37}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{57}{80}\right)\)
\(\chi_{6336}(4139,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{79}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{3}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{59}{80}\right)\)
\(\chi_{6336}(4211,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{3}{40}\right)\) \(e\left(\frac{53}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{27}{40}\right)\) \(e\left(\frac{1}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{73}{80}\right)\)
\(\chi_{6336}(4283,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{80}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{43}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{71}{80}\right)\)
\(\chi_{6336}(4427,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{80}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{7}{80}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{67}{80}\right)\)
\(\chi_{6336}(4931,\cdot)\) \(1\) \(1\) \(e\left(\frac{71}{80}\right)\) \(e\left(\frac{39}{40}\right)\) \(e\left(\frac{49}{80}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{31}{40}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{69}{80}\right)\)
\(\chi_{6336}(5003,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{80}\right)\) \(e\left(\frac{33}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{39}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{17}{40}\right)\) \(e\left(\frac{11}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{80}\right)\)
\(\chi_{6336}(5075,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{80}\right)\) \(e\left(\frac{11}{40}\right)\) \(e\left(\frac{61}{80}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{13}{80}\right)\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{19}{40}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{80}\right)\)
\(\chi_{6336}(5219,\cdot)\) \(1\) \(1\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{57}{80}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{41}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{69}{80}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{77}{80}\right)\)
\(\chi_{6336}(5723,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{29}{40}\right)\) \(e\left(\frac{19}{80}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{21}{40}\right)\) \(e\left(\frac{23}{80}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{79}{80}\right)\)
\(\chi_{6336}(5795,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{80}\right)\) \(e\left(\frac{23}{40}\right)\) \(e\left(\frac{73}{80}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{40}\right)\) \(e\left(\frac{21}{80}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{13}{80}\right)\)
\(\chi_{6336}(5867,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{80}\right)\) \(e\left(\frac{1}{40}\right)\) \(e\left(\frac{31}{80}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{63}{80}\right)\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{9}{40}\right)\) \(e\left(\frac{67}{80}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{11}{80}\right)\)