Properties

Label 6384.1067
Modulus 63846384
Conductor 63846384
Order 3636
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,9,18,6,26]))
 
pari: [g,chi] = znchar(Mod(1067,6384))
 

Basic properties

Modulus: 63846384
Conductor: 63846384
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6384.nd

χ6384(59,)\chi_{6384}(59,\cdot) χ6384(1067,)\chi_{6384}(1067,\cdot) χ6384(1307,)\chi_{6384}(1307,\cdot) χ6384(2483,)\chi_{6384}(2483,\cdot) χ6384(2579,)\chi_{6384}(2579,\cdot) χ6384(2651,)\chi_{6384}(2651,\cdot) χ6384(3251,)\chi_{6384}(3251,\cdot) χ6384(4259,)\chi_{6384}(4259,\cdot) χ6384(4499,)\chi_{6384}(4499,\cdot) χ6384(5675,)\chi_{6384}(5675,\cdot) χ6384(5771,)\chi_{6384}(5771,\cdot) χ6384(5843,)\chi_{6384}(5843,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Number field defined by a degree 36 polynomial

Values on generators

(799,4789,2129,913,1009)(799,4789,2129,913,1009)(1,i,1,e(16),e(1318))(-1,i,-1,e\left(\frac{1}{6}\right),e\left(\frac{13}{18}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ6384(1067,a) \chi_{ 6384 }(1067, a) 1111e(536)e\left(\frac{5}{36}\right)e(712)e\left(\frac{7}{12}\right)e(3136)e\left(\frac{31}{36}\right)e(89)e\left(\frac{8}{9}\right)e(518)e\left(\frac{5}{18}\right)e(518)e\left(\frac{5}{18}\right)e(1936)e\left(\frac{19}{36}\right)1-1e(112)e\left(\frac{1}{12}\right)e(89)e\left(\frac{8}{9}\right)
sage: chi.jacobi_sum(n)
 
χ6384(1067,a)   \chi_{ 6384 }(1067,a) \; at   a=\;a = e.g. 2