Properties

Label 6384.2501
Modulus 63846384
Conductor 63846384
Order 1212
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,3,6,4,10]))
 
pari: [g,chi] = znchar(Mod(2501,6384))
 

Basic properties

Modulus: 63846384
Conductor: 63846384
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1212
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6384.ig

χ6384(2501,)\chi_{6384}(2501,\cdot) χ6384(2573,)\chi_{6384}(2573,\cdot) χ6384(5693,)\chi_{6384}(5693,\cdot) χ6384(5765,)\chi_{6384}(5765,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ12)\Q(\zeta_{12})
Fixed field: Number field defined by a degree 12 polynomial

Values on generators

(799,4789,2129,913,1009)(799,4789,2129,913,1009)(1,i,1,e(13),e(56))(1,i,-1,e\left(\frac{1}{3}\right),e\left(\frac{5}{6}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ6384(2501,a) \chi_{ 6384 }(2501, a) 1111i-ie(112)e\left(\frac{1}{12}\right)e(1112)e\left(\frac{11}{12}\right)e(16)e\left(\frac{1}{6}\right)e(13)e\left(\frac{1}{3}\right)1-1e(512)e\left(\frac{5}{12}\right)e(56)e\left(\frac{5}{6}\right)e(512)e\left(\frac{5}{12}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ6384(2501,a)   \chi_{ 6384 }(2501,a) \; at   a=\;a = e.g. 2