Properties

Label 6384.5545
Modulus 63846384
Conductor 152152
Order 1818
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(6384, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([0,9,0,0,4]))
 
Copy content pari:[g,chi] = znchar(Mod(5545,6384))
 

Basic properties

Modulus: 63846384
Conductor: 152152
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: 1818
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from χ152(149,)\chi_{152}(149,\cdot)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 6384.lm

χ6384(169,)\chi_{6384}(169,\cdot) χ6384(841,)\chi_{6384}(841,\cdot) χ6384(1849,)\chi_{6384}(1849,\cdot) χ6384(4873,)\chi_{6384}(4873,\cdot) χ6384(5545,)\chi_{6384}(5545,\cdot) χ6384(6217,)\chi_{6384}(6217,\cdot)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ9)\Q(\zeta_{9})
Fixed field: 18.18.38713951190154487490850848768.1

Values on generators

(799,4789,2129,913,1009)(799,4789,2129,913,1009)(1,1,1,1,e(29))(1,-1,1,1,e\left(\frac{2}{9}\right))

First values

aa 1-11155111113131717232325252929313137374141
χ6384(5545,a) \chi_{ 6384 }(5545, a) 1111e(118)e\left(\frac{1}{18}\right)e(16)e\left(\frac{1}{6}\right)e(1118)e\left(\frac{11}{18}\right)e(29)e\left(\frac{2}{9}\right)e(49)e\left(\frac{4}{9}\right)e(19)e\left(\frac{1}{9}\right)e(518)e\left(\frac{5}{18}\right)e(13)e\left(\frac{1}{3}\right)1-1e(89)e\left(\frac{8}{9}\right)
Copy content sage:chi.jacobi_sum(n)
 
χ6384(5545,a)   \chi_{ 6384 }(5545,a) \; at   a=\;a = e.g. 2