Properties

Label 6384.5629
Modulus $6384$
Conductor $304$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,27,0,0,32]))
 
pari: [g,chi] = znchar(Mod(5629,6384))
 

Basic properties

Modulus: \(6384\)
Conductor: \(304\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{304}(157,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6384.nk

\(\chi_{6384}(85,\cdot)\) \(\chi_{6384}(253,\cdot)\) \(\chi_{6384}(757,\cdot)\) \(\chi_{6384}(1429,\cdot)\) \(\chi_{6384}(1765,\cdot)\) \(\chi_{6384}(2437,\cdot)\) \(\chi_{6384}(3277,\cdot)\) \(\chi_{6384}(3445,\cdot)\) \(\chi_{6384}(3949,\cdot)\) \(\chi_{6384}(4621,\cdot)\) \(\chi_{6384}(4957,\cdot)\) \(\chi_{6384}(5629,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.52733281945045886724167383478270850720626086921526306402773390818541568.1

Values on generators

\((799,4789,2129,913,1009)\) → \((1,-i,1,1,e\left(\frac{8}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 6384 }(5629, a) \) \(1\)\(1\)\(e\left(\frac{35}{36}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{8}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{1}{3}\right)\)\(-i\)\(e\left(\frac{1}{18}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6384 }(5629,a) \;\) at \(\;a = \) e.g. 2