Properties

Label 6384.4411
Modulus $6384$
Conductor $304$
Order $36$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6384, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,9,0,0,26]))
 
pari: [g,chi] = znchar(Mod(4411,6384))
 

Basic properties

Modulus: \(6384\)
Conductor: \(304\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{304}(155,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6384.nu

\(\chi_{6384}(211,\cdot)\) \(\chi_{6384}(547,\cdot)\) \(\chi_{6384}(1219,\cdot)\) \(\chi_{6384}(1723,\cdot)\) \(\chi_{6384}(1891,\cdot)\) \(\chi_{6384}(2731,\cdot)\) \(\chi_{6384}(3403,\cdot)\) \(\chi_{6384}(3739,\cdot)\) \(\chi_{6384}(4411,\cdot)\) \(\chi_{6384}(4915,\cdot)\) \(\chi_{6384}(5083,\cdot)\) \(\chi_{6384}(5923,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.19036714782161565107424425435655777110146017378670996611401194085493506048.1

Values on generators

\((799,4789,2129,913,1009)\) → \((-1,i,1,1,e\left(\frac{13}{18}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 6384 }(4411, a) \) \(1\)\(1\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{4}{9}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{1}{36}\right)\)\(e\left(\frac{1}{3}\right)\)\(-i\)\(e\left(\frac{8}{9}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6384 }(4411,a) \;\) at \(\;a = \) e.g. 2