sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(6384, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([18,9,0,0,26]))
pari:[g,chi] = znchar(Mod(4411,6384))
χ6384(211,⋅)
χ6384(547,⋅)
χ6384(1219,⋅)
χ6384(1723,⋅)
χ6384(1891,⋅)
χ6384(2731,⋅)
χ6384(3403,⋅)
χ6384(3739,⋅)
χ6384(4411,⋅)
χ6384(4915,⋅)
χ6384(5083,⋅)
χ6384(5923,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(799,4789,2129,913,1009) → (−1,i,1,1,e(1813))
a |
−1 | 1 | 5 | 11 | 13 | 17 | 23 | 25 | 29 | 31 | 37 | 41 |
χ6384(4411,a) |
1 | 1 | e(3629) | e(125) | e(3613) | e(92) | e(94) | e(1811) | e(361) | e(31) | −i | e(98) |
sage:chi.jacobi_sum(n)