from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(640, base_ring=CyclotomicField(32))
M = H._module
chi = DirichletCharacter(H, M([16,27,24]))
pari: [g,chi] = znchar(Mod(483,640))
Basic properties
Modulus: | \(640\) | |
Conductor: | \(640\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(32\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 640.bl
\(\chi_{640}(3,\cdot)\) \(\chi_{640}(27,\cdot)\) \(\chi_{640}(83,\cdot)\) \(\chi_{640}(107,\cdot)\) \(\chi_{640}(163,\cdot)\) \(\chi_{640}(187,\cdot)\) \(\chi_{640}(243,\cdot)\) \(\chi_{640}(267,\cdot)\) \(\chi_{640}(323,\cdot)\) \(\chi_{640}(347,\cdot)\) \(\chi_{640}(403,\cdot)\) \(\chi_{640}(427,\cdot)\) \(\chi_{640}(483,\cdot)\) \(\chi_{640}(507,\cdot)\) \(\chi_{640}(563,\cdot)\) \(\chi_{640}(587,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{32})\) |
Fixed field: | 32.32.187072209578355573530071658587684226515959365500928000000000000000000000000.2 |
Values on generators
\((511,261,257)\) → \((-1,e\left(\frac{27}{32}\right),-i)\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(7\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(21\) | \(23\) | \(27\) |
\( \chi_{ 640 }(483, a) \) | \(1\) | \(1\) | \(e\left(\frac{9}{32}\right)\) | \(e\left(\frac{11}{16}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{7}{32}\right)\) | \(e\left(\frac{29}{32}\right)\) | \(e\left(\frac{3}{8}\right)\) | \(e\left(\frac{13}{32}\right)\) | \(e\left(\frac{31}{32}\right)\) | \(e\left(\frac{9}{16}\right)\) | \(e\left(\frac{27}{32}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)