Properties

Label 6480.2347
Modulus $6480$
Conductor $6480$
Order $108$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(6480, base_ring=CyclotomicField(108))
 
M = H._module
 
chi = DirichletCharacter(H, M([54,27,56,27]))
 
pari: [g,chi] = znchar(Mod(2347,6480))
 

Basic properties

Modulus: \(6480\)
Conductor: \(6480\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(108\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 6480.fh

\(\chi_{6480}(187,\cdot)\) \(\chi_{6480}(403,\cdot)\) \(\chi_{6480}(427,\cdot)\) \(\chi_{6480}(643,\cdot)\) \(\chi_{6480}(907,\cdot)\) \(\chi_{6480}(1123,\cdot)\) \(\chi_{6480}(1147,\cdot)\) \(\chi_{6480}(1363,\cdot)\) \(\chi_{6480}(1627,\cdot)\) \(\chi_{6480}(1843,\cdot)\) \(\chi_{6480}(1867,\cdot)\) \(\chi_{6480}(2083,\cdot)\) \(\chi_{6480}(2347,\cdot)\) \(\chi_{6480}(2563,\cdot)\) \(\chi_{6480}(2587,\cdot)\) \(\chi_{6480}(2803,\cdot)\) \(\chi_{6480}(3067,\cdot)\) \(\chi_{6480}(3283,\cdot)\) \(\chi_{6480}(3307,\cdot)\) \(\chi_{6480}(3523,\cdot)\) \(\chi_{6480}(3787,\cdot)\) \(\chi_{6480}(4003,\cdot)\) \(\chi_{6480}(4027,\cdot)\) \(\chi_{6480}(4243,\cdot)\) \(\chi_{6480}(4507,\cdot)\) \(\chi_{6480}(4723,\cdot)\) \(\chi_{6480}(4747,\cdot)\) \(\chi_{6480}(4963,\cdot)\) \(\chi_{6480}(5227,\cdot)\) \(\chi_{6480}(5443,\cdot)\) ...

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{108})$
Fixed field: Number field defined by a degree 108 polynomial (not computed)

Values on generators

\((2431,1621,6401,1297)\) → \((-1,i,e\left(\frac{14}{27}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 6480 }(2347, a) \) \(1\)\(1\)\(e\left(\frac{59}{108}\right)\)\(e\left(\frac{53}{108}\right)\)\(e\left(\frac{35}{54}\right)\)\(e\left(\frac{13}{36}\right)\)\(e\left(\frac{23}{36}\right)\)\(e\left(\frac{49}{108}\right)\)\(e\left(\frac{47}{108}\right)\)\(e\left(\frac{47}{54}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{53}{54}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 6480 }(2347,a) \;\) at \(\;a = \) e.g. 2