Properties

Label 666.17
Modulus 666666
Conductor 111111
Order 3636
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(666, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([18,7]))
 
pari: [g,chi] = znchar(Mod(17,666))
 

Basic properties

Modulus: 666666
Conductor: 111111
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ111(17,)\chi_{111}(17,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 666.bs

χ666(17,)\chi_{666}(17,\cdot) χ666(35,)\chi_{666}(35,\cdot) χ666(89,)\chi_{666}(89,\cdot) χ666(143,)\chi_{666}(143,\cdot) χ666(161,)\chi_{666}(161,\cdot) χ666(431,)\chi_{666}(431,\cdot) χ666(449,)\chi_{666}(449,\cdot) χ666(503,)\chi_{666}(503,\cdot) χ666(557,)\chi_{666}(557,\cdot) χ666(575,)\chi_{666}(575,\cdot) χ666(611,)\chi_{666}(611,\cdot) χ666(647,)\chi_{666}(647,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Q(ζ111)+\Q(\zeta_{111})^+

Values on generators

(371,631)(371,631)(1,e(736))(-1,e\left(\frac{7}{36}\right))

First values

aa 1-111557711111313171719192323252529293131
χ666(17,a) \chi_{ 666 }(17, a) 1111e(3536)e\left(\frac{35}{36}\right)e(29)e\left(\frac{2}{9}\right)e(13)e\left(\frac{1}{3}\right)e(536)e\left(\frac{5}{36}\right)e(3136)e\left(\frac{31}{36}\right)e(2936)e\left(\frac{29}{36}\right)e(512)e\left(\frac{5}{12}\right)e(1718)e\left(\frac{17}{18}\right)e(712)e\left(\frac{7}{12}\right)i-i
sage: chi.jacobi_sum(n)
 
χ666(17,a)   \chi_{ 666 }(17,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ666(17,))   \tau_{ a }( \chi_{ 666 }(17,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ666(17,),χ666(n,))   J(\chi_{ 666 }(17,·),\chi_{ 666 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ666(17,))  K(a,b,\chi_{ 666 }(17,·)) \; at   a,b=\; a,b = e.g. 1,2