Properties

Label 675.34
Modulus $675$
Conductor $675$
Order $90$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(90))
 
M = H._module
 
chi = DirichletCharacter(H, M([80,63]))
 
pari: [g,chi] = znchar(Mod(34,675))
 

Basic properties

Modulus: \(675\)
Conductor: \(675\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(90\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 675.bg

\(\chi_{675}(4,\cdot)\) \(\chi_{675}(34,\cdot)\) \(\chi_{675}(79,\cdot)\) \(\chi_{675}(94,\cdot)\) \(\chi_{675}(139,\cdot)\) \(\chi_{675}(169,\cdot)\) \(\chi_{675}(184,\cdot)\) \(\chi_{675}(214,\cdot)\) \(\chi_{675}(229,\cdot)\) \(\chi_{675}(259,\cdot)\) \(\chi_{675}(304,\cdot)\) \(\chi_{675}(319,\cdot)\) \(\chi_{675}(364,\cdot)\) \(\chi_{675}(394,\cdot)\) \(\chi_{675}(409,\cdot)\) \(\chi_{675}(439,\cdot)\) \(\chi_{675}(454,\cdot)\) \(\chi_{675}(484,\cdot)\) \(\chi_{675}(529,\cdot)\) \(\chi_{675}(544,\cdot)\) \(\chi_{675}(589,\cdot)\) \(\chi_{675}(619,\cdot)\) \(\chi_{675}(634,\cdot)\) \(\chi_{675}(664,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{45})$
Fixed field: Number field defined by a degree 90 polynomial

Values on generators

\((326,352)\) → \((e\left(\frac{8}{9}\right),e\left(\frac{7}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(7\)\(8\)\(11\)\(13\)\(14\)\(16\)\(17\)\(19\)
\( \chi_{ 675 }(34, a) \) \(1\)\(1\)\(e\left(\frac{53}{90}\right)\)\(e\left(\frac{8}{45}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{34}{45}\right)\)\(e\left(\frac{37}{90}\right)\)\(e\left(\frac{14}{45}\right)\)\(e\left(\frac{16}{45}\right)\)\(e\left(\frac{13}{30}\right)\)\(e\left(\frac{4}{15}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 675 }(34,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 675 }(34,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 675 }(34,·),\chi_{ 675 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 675 }(34,·)) \;\) at \(\; a,b = \) e.g. 1,2