Properties

Label 675.518
Modulus 675675
Conductor 135135
Order 3636
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(675, base_ring=CyclotomicField(36))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,27]))
 
pari: [g,chi] = znchar(Mod(518,675))
 

Basic properties

Modulus: 675675
Conductor: 135135
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3636
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ135(113,)\chi_{135}(113,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 675.ba

χ675(32,)\chi_{675}(32,\cdot) χ675(68,)\chi_{675}(68,\cdot) χ675(182,)\chi_{675}(182,\cdot) χ675(218,)\chi_{675}(218,\cdot) χ675(257,)\chi_{675}(257,\cdot) χ675(293,)\chi_{675}(293,\cdot) χ675(407,)\chi_{675}(407,\cdot) χ675(443,)\chi_{675}(443,\cdot) χ675(482,)\chi_{675}(482,\cdot) χ675(518,)\chi_{675}(518,\cdot) χ675(632,)\chi_{675}(632,\cdot) χ675(668,)\chi_{675}(668,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ36)\Q(\zeta_{36})
Fixed field: Q(ζ135)+\Q(\zeta_{135})^+

Values on generators

(326,352)(326,352)(e(518),i)(e\left(\frac{5}{18}\right),-i)

First values

aa 1-11122447788111113131414161617171919
χ675(518,a) \chi_{ 675 }(518, a) 1111e(136)e\left(\frac{1}{36}\right)e(118)e\left(\frac{1}{18}\right)e(736)e\left(\frac{7}{36}\right)e(112)e\left(\frac{1}{12}\right)e(1118)e\left(\frac{11}{18}\right)e(1736)e\left(\frac{17}{36}\right)e(29)e\left(\frac{2}{9}\right)e(19)e\left(\frac{1}{9}\right)e(1112)e\left(\frac{11}{12}\right)e(56)e\left(\frac{5}{6}\right)
sage: chi.jacobi_sum(n)
 
χ675(518,a)   \chi_{ 675 }(518,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ675(518,))   \tau_{ a }( \chi_{ 675 }(518,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ675(518,),χ675(n,))   J(\chi_{ 675 }(518,·),\chi_{ 675 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ675(518,))  K(a,b,\chi_{ 675 }(518,·)) \; at   a,b=\; a,b = e.g. 1,2