Properties

Label 676.511
Modulus $676$
Conductor $676$
Order $78$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(78))
 
M = H._module
 
chi = DirichletCharacter(H, M([39,1]))
 
pari: [g,chi] = znchar(Mod(511,676))
 

Basic properties

Modulus: \(676\)
Conductor: \(676\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(78\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 676.u

\(\chi_{676}(43,\cdot)\) \(\chi_{676}(75,\cdot)\) \(\chi_{676}(95,\cdot)\) \(\chi_{676}(127,\cdot)\) \(\chi_{676}(179,\cdot)\) \(\chi_{676}(199,\cdot)\) \(\chi_{676}(231,\cdot)\) \(\chi_{676}(251,\cdot)\) \(\chi_{676}(283,\cdot)\) \(\chi_{676}(303,\cdot)\) \(\chi_{676}(335,\cdot)\) \(\chi_{676}(355,\cdot)\) \(\chi_{676}(387,\cdot)\) \(\chi_{676}(407,\cdot)\) \(\chi_{676}(439,\cdot)\) \(\chi_{676}(459,\cdot)\) \(\chi_{676}(491,\cdot)\) \(\chi_{676}(511,\cdot)\) \(\chi_{676}(543,\cdot)\) \(\chi_{676}(563,\cdot)\) \(\chi_{676}(595,\cdot)\) \(\chi_{676}(615,\cdot)\) \(\chi_{676}(647,\cdot)\) \(\chi_{676}(667,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: Number field defined by a degree 78 polynomial

Values on generators

\((339,509)\) → \((-1,e\left(\frac{1}{78}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 676 }(511, a) \) \(-1\)\(1\)\(e\left(\frac{7}{78}\right)\)\(e\left(\frac{3}{26}\right)\)\(e\left(\frac{34}{39}\right)\)\(e\left(\frac{7}{39}\right)\)\(e\left(\frac{32}{39}\right)\)\(e\left(\frac{8}{39}\right)\)\(e\left(\frac{34}{39}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{25}{26}\right)\)\(e\left(\frac{1}{6}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 676 }(511,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 676 }(511,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 676 }(511,·),\chi_{ 676 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 676 }(511,·)) \;\) at \(\; a,b = \) e.g. 1,2