sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(676, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,1]))
pari:[g,chi] = znchar(Mod(511,676))
Modulus: | 676 | |
Conductor: | 676 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 78 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ676(43,⋅)
χ676(75,⋅)
χ676(95,⋅)
χ676(127,⋅)
χ676(179,⋅)
χ676(199,⋅)
χ676(231,⋅)
χ676(251,⋅)
χ676(283,⋅)
χ676(303,⋅)
χ676(335,⋅)
χ676(355,⋅)
χ676(387,⋅)
χ676(407,⋅)
χ676(439,⋅)
χ676(459,⋅)
χ676(491,⋅)
χ676(511,⋅)
χ676(543,⋅)
χ676(563,⋅)
χ676(595,⋅)
χ676(615,⋅)
χ676(647,⋅)
χ676(667,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(339,509) → (−1,e(781))
a |
−1 | 1 | 3 | 5 | 7 | 9 | 11 | 15 | 17 | 19 | 21 | 23 |
χ676(511,a) |
−1 | 1 | e(787) | e(263) | e(3934) | e(397) | e(3932) | e(398) | e(3934) | e(31) | e(2625) | e(61) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)