from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(676, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([13,1]))
pari: [g,chi] = znchar(Mod(571,676))
Basic properties
Modulus: | \(676\) | |
Conductor: | \(676\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(26\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 676.p
\(\chi_{676}(51,\cdot)\) \(\chi_{676}(103,\cdot)\) \(\chi_{676}(155,\cdot)\) \(\chi_{676}(207,\cdot)\) \(\chi_{676}(259,\cdot)\) \(\chi_{676}(311,\cdot)\) \(\chi_{676}(363,\cdot)\) \(\chi_{676}(415,\cdot)\) \(\chi_{676}(467,\cdot)\) \(\chi_{676}(519,\cdot)\) \(\chi_{676}(571,\cdot)\) \(\chi_{676}(623,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{13})\) |
Fixed field: | 26.0.257042034665630107056690459656879750694098197206386665924329472.1 |
Values on generators
\((339,509)\) → \((-1,e\left(\frac{1}{26}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 676 }(571, a) \) | \(-1\) | \(1\) | \(e\left(\frac{7}{26}\right)\) | \(e\left(\frac{9}{26}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(1\) | \(e\left(\frac{23}{26}\right)\) | \(-1\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)