Properties

Label 680.123
Modulus 680680
Conductor 680680
Order 44
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(680, base_ring=CyclotomicField(4))
 
M = H._module
 
chi = DirichletCharacter(H, M([2,2,3,3]))
 
pari: [g,chi] = znchar(Mod(123,680))
 

Basic properties

Modulus: 680680
Conductor: 680680
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 44
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 680.bl

χ680(123,)\chi_{680}(123,\cdot) χ680(387,)\chi_{680}(387,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(i)\mathbb{Q}(i)
Fixed field: 4.4.39304000.1

Values on generators

(511,341,137,241)(511,341,137,241)(1,1,i,i)(-1,-1,-i,-i)

First values

aa 1-1113377991111131319192121232327272929
χ680(123,a) \chi_{ 680 }(123, a) 1111111-111iii-i111-11111i-i
sage: chi.jacobi_sum(n)
 
χ680(123,a)   \chi_{ 680 }(123,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ680(123,))   \tau_{ a }( \chi_{ 680 }(123,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ680(123,),χ680(n,))   J(\chi_{ 680 }(123,·),\chi_{ 680 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ680(123,))  K(a,b,\chi_{ 680 }(123,·)) \; at   a,b=\; a,b = e.g. 1,2