Properties

Label 680.83
Modulus 680680
Conductor 680680
Order 88
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(680, base_ring=CyclotomicField(8))
 
M = H._module
 
chi = DirichletCharacter(H, M([4,4,6,3]))
 
pari: [g,chi] = znchar(Mod(83,680))
 

Basic properties

Modulus: 680680
Conductor: 680680
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 88
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 680.bz

χ680(83,)\chi_{680}(83,\cdot) χ680(467,)\chi_{680}(467,\cdot) χ680(563,)\chi_{680}(563,\cdot) χ680(587,)\chi_{680}(587,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ8)\Q(\zeta_{8})
Fixed field: 8.8.26261675072000000.2

Values on generators

(511,341,137,241)(511,341,137,241)(1,1,i,e(38))(-1,-1,-i,e\left(\frac{3}{8}\right))

First values

aa 1-1113377991111131319192121232327272929
χ680(83,a) \chi_{ 680 }(83, a) 1111e(58)e\left(\frac{5}{8}\right)e(38)e\left(\frac{3}{8}\right)iie(58)e\left(\frac{5}{8}\right)iii-i11e(38)e\left(\frac{3}{8}\right)e(78)e\left(\frac{7}{8}\right)e(78)e\left(\frac{7}{8}\right)
sage: chi.jacobi_sum(n)
 
χ680(83,a)   \chi_{ 680 }(83,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ680(83,))   \tau_{ a }( \chi_{ 680 }(83,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ680(83,),χ680(n,))   J(\chi_{ 680 }(83,·),\chi_{ 680 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ680(83,))  K(a,b,\chi_{ 680 }(83,·)) \; at   a,b=\; a,b = e.g. 1,2