Properties

Label 680.99
Modulus 680680
Conductor 680680
Order 1616
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(680, base_ring=CyclotomicField(16))
 
M = H._module
 
chi = DirichletCharacter(H, M([8,8,8,9]))
 
pari: [g,chi] = znchar(Mod(99,680))
 

Basic properties

Modulus: 680680
Conductor: 680680
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 1616
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 680.co

χ680(99,)\chi_{680}(99,\cdot) χ680(139,)\chi_{680}(139,\cdot) χ680(299,)\chi_{680}(299,\cdot) χ680(379,)\chi_{680}(379,\cdot) χ680(419,)\chi_{680}(419,\cdot) χ680(499,)\chi_{680}(499,\cdot) χ680(539,)\chi_{680}(539,\cdot) χ680(619,)\chi_{680}(619,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ16)\Q(\zeta_{16})
Fixed field: 16.16.18759175710374728781004800000000.1

Values on generators

(511,341,137,241)(511,341,137,241)(1,1,1,e(916))(-1,-1,-1,e\left(\frac{9}{16}\right))

First values

aa 1-1113377991111131319192121232327272929
χ680(99,a) \chi_{ 680 }(99, a) 1111e(116)e\left(\frac{1}{16}\right)e(316)e\left(\frac{3}{16}\right)e(18)e\left(\frac{1}{8}\right)e(1516)e\left(\frac{15}{16}\right)iie(78)e\left(\frac{7}{8}\right)iie(716)e\left(\frac{7}{16}\right)e(316)e\left(\frac{3}{16}\right)e(1316)e\left(\frac{13}{16}\right)
sage: chi.jacobi_sum(n)
 
χ680(99,a)   \chi_{ 680 }(99,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ680(99,))   \tau_{ a }( \chi_{ 680 }(99,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ680(99,),χ680(n,))   J(\chi_{ 680 }(99,·),\chi_{ 680 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ680(99,))  K(a,b,\chi_{ 680 }(99,·)) \; at   a,b=\; a,b = e.g. 1,2