Properties

Label 693.283
Modulus 693693
Conductor 693693
Order 3030
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(30))
 
M = H._module
 
chi = DirichletCharacter(H, M([10,5,9]))
 
pari: [g,chi] = znchar(Mod(283,693))
 

Basic properties

Modulus: 693693
Conductor: 693693
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 3030
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 693.co

χ693(61,)\chi_{693}(61,\cdot) χ693(94,)\chi_{693}(94,\cdot) χ693(250,)\chi_{693}(250,\cdot) χ693(283,)\chi_{693}(283,\cdot) χ693(376,)\chi_{693}(376,\cdot) χ693(409,)\chi_{693}(409,\cdot) χ693(502,)\chi_{693}(502,\cdot) χ693(535,)\chi_{693}(535,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ15)\Q(\zeta_{15})
Fixed field: 30.30.213748801558268665141942640259330854834575418378058033233791144352997.2

Values on generators

(155,199,442)(155,199,442)(e(13),e(16),e(310))(e\left(\frac{1}{3}\right),e\left(\frac{1}{6}\right),e\left(\frac{3}{10}\right))

First values

aa 1-11122445588101013131616171719192020
χ693(283,a) \chi_{ 693 }(283, a) 1111e(2930)e\left(\frac{29}{30}\right)e(1415)e\left(\frac{14}{15}\right)e(710)e\left(\frac{7}{10}\right)e(910)e\left(\frac{9}{10}\right)e(23)e\left(\frac{2}{3}\right)e(715)e\left(\frac{7}{15}\right)e(1315)e\left(\frac{13}{15}\right)e(1315)e\left(\frac{13}{15}\right)e(1115)e\left(\frac{11}{15}\right)e(1930)e\left(\frac{19}{30}\right)
sage: chi.jacobi_sum(n)
 
χ693(283,a)   \chi_{ 693 }(283,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ693(283,))   \tau_{ a }( \chi_{ 693 }(283,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ693(283,),χ693(n,))   J(\chi_{ 693 }(283,·),\chi_{ 693 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ693(283,))  K(a,b,\chi_{ 693 }(283,·)) \; at   a,b=\; a,b = e.g. 1,2