sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(693, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([20,20,21]))
pari:[g,chi] = znchar(Mod(403,693))
Modulus: | 693 | |
Conductor: | 693 |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | 30 |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
χ693(151,⋅)
χ693(184,⋅)
χ693(277,⋅)
χ693(310,⋅)
χ693(403,⋅)
χ693(436,⋅)
χ693(655,⋅)
χ693(688,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(155,199,442) → (e(32),e(32),e(107))
a |
−1 | 1 | 2 | 4 | 5 | 8 | 10 | 13 | 16 | 17 | 19 | 20 |
χ693(403,a) |
−1 | 1 | e(107) | e(52) | e(157) | e(101) | e(61) | e(301) | e(54) | e(3029) | e(3013) | e(1513) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)