from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(693, base_ring=CyclotomicField(30))
M = H._module
chi = DirichletCharacter(H, M([10,25,9]))
pari: [g,chi] = znchar(Mod(481,693))
Basic properties
Modulus: | \(693\) | |
Conductor: | \(693\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(30\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | even | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Galois orbit 693.cz
\(\chi_{693}(40,\cdot)\) \(\chi_{693}(52,\cdot)\) \(\chi_{693}(178,\cdot)\) \(\chi_{693}(292,\cdot)\) \(\chi_{693}(304,\cdot)\) \(\chi_{693}(481,\cdot)\) \(\chi_{693}(556,\cdot)\) \(\chi_{693}(607,\cdot)\)
sage: chi.galois_orbit()
order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Related number fields
Field of values: | \(\Q(\zeta_{15})\) |
Fixed field: | Number field defined by a degree 30 polynomial |
Values on generators
\((155,199,442)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{5}{6}\right),e\left(\frac{3}{10}\right))\)
First values
\(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(13\) | \(16\) | \(17\) | \(19\) | \(20\) |
\( \chi_{ 693 }(481, a) \) | \(1\) | \(1\) | \(e\left(\frac{3}{10}\right)\) | \(e\left(\frac{3}{5}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{9}{10}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{1}{5}\right)\) | \(e\left(\frac{8}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{19}{30}\right)\) |
sage: chi.jacobi_sum(n)
Gauss sum
sage: chi.gauss_sum(a)
pari: znchargauss(g,chi,a)
Jacobi sum
sage: chi.jacobi_sum(n)
Kloosterman sum
sage: chi.kloosterman_sum(a,b)