Properties

Label 693.8
Modulus $693$
Conductor $33$
Order $10$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(693, base_ring=CyclotomicField(10))
 
M = H._module
 
chi = DirichletCharacter(H, M([5,0,3]))
 
pari: [g,chi] = znchar(Mod(8,693))
 

Basic properties

Modulus: \(693\)
Conductor: \(33\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(10\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{33}(8,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 693.bq

\(\chi_{693}(8,\cdot)\) \(\chi_{693}(134,\cdot)\) \(\chi_{693}(260,\cdot)\) \(\chi_{693}(512,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: \(\Q(\zeta_{33})^+\)

Values on generators

\((155,199,442)\) → \((-1,1,e\left(\frac{3}{10}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(13\)\(16\)\(17\)\(19\)\(20\)
\( \chi_{ 693 }(8, a) \) \(1\)\(1\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{3}{5}\right)\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{2}{5}\right)\)\(-1\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{10}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 693 }(8,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 693 }(8,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 693 }(8,·),\chi_{ 693 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 693 }(8,·)) \;\) at \(\; a,b = \) e.g. 1,2