sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(700, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([0,3,20]))
pari:[g,chi] = znchar(Mod(177,700))
χ700(37,⋅)
χ700(53,⋅)
χ700(137,⋅)
χ700(177,⋅)
χ700(233,⋅)
χ700(277,⋅)
χ700(317,⋅)
χ700(333,⋅)
χ700(373,⋅)
χ700(417,⋅)
χ700(473,⋅)
χ700(513,⋅)
χ700(597,⋅)
χ700(613,⋅)
χ700(653,⋅)
χ700(697,⋅)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
(351,477,101) → (1,e(201),e(31))
a |
−1 | 1 | 3 | 9 | 11 | 13 | 17 | 19 | 23 | 27 | 29 | 31 |
χ700(177,a) |
−1 | 1 | e(6041) | e(3011) | e(152) | e(2019) | e(6059) | e(3017) | e(6013) | e(201) | e(101) | e(1511) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)