Properties

Label 700.501
Modulus 700700
Conductor 77
Order 33
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(700, base_ring=CyclotomicField(6))
 
M = H._module
 
chi = DirichletCharacter(H, M([0,0,4]))
 
pari: [g,chi] = znchar(Mod(501,700))
 

Basic properties

Modulus: 700700
Conductor: 77
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: 33
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from χ7(4,)\chi_{7}(4,\cdot)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 700.i

χ700(401,)\chi_{700}(401,\cdot) χ700(501,)\chi_{700}(501,\cdot)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: Q(ζ3)\mathbb{Q}(\zeta_3)
Fixed field: Q(ζ7)+\Q(\zeta_{7})^+

Values on generators

(351,477,101)(351,477,101)(1,1,e(23))(1,1,e\left(\frac{2}{3}\right))

First values

aa 1-111339911111313171719192323272729293131
χ700(501,a) \chi_{ 700 }(501, a) 1111e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(23)e\left(\frac{2}{3}\right)11e(23)e\left(\frac{2}{3}\right)e(13)e\left(\frac{1}{3}\right)e(13)e\left(\frac{1}{3}\right)1111e(23)e\left(\frac{2}{3}\right)
sage: chi.jacobi_sum(n)
 
χ700(501,a)   \chi_{ 700 }(501,a) \; at   a=\;a = e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
τa(χ700(501,))   \tau_{ a }( \chi_{ 700 }(501,·) )\; at   a=\;a = e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
J(χ700(501,),χ700(n,))   J(\chi_{ 700 }(501,·),\chi_{ 700 }(n,·)) \; for   n= \; n = e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
K(a,b,χ700(501,))  K(a,b,\chi_{ 700 }(501,·)) \; at   a,b=\; a,b = e.g. 1,2